A sheep in wolf’s clothing: do carrion and dung odours of flowers not only attract pollinators but also deter herbivores?

Simcha Lev-Yadun,* Gidi Ne’eman, and Uri Shanas

Department of Science Education - Biology, Faculty of Science and Science Education, University of Haifa - Oranim, Tivon, Israel

Carrion and dung odours of various flowers have traditionally been considered an adaptation for attracting the flies and beetles that pollinate them. While we accept the role of such odours in pollinator attraction, we propose that they may also have another, overlooked, anti-herbivore defensive function. We suggest that such odours may deter mammalian herbivores, especially during the critical period of flowering. Carrion odour is a good predictor for two potential dangers to mammalian herbivores: (1) pathogenic microbes, (2) proximity of carnivores. Similarly, dung odour predicts faeces-contaminated habitats that present high risks of parasitism. These are two new types of repulsive olfactory aposematic mimicry by plants: (1) olfactory feigning of carcass (thanatosis), a well-known behavioural defensive strategy in animals, (2) olfactory mimicry of faeces, which also has a defensive visual parallel in animals.

Keywords: aposematic odour; carrion; defence; dung; herbivory; mimicry; thanatosis

Certain plants carry in their flowers a very strong carrion or dung odour, often regarded as a deceptive odour for attracting fly and beetle pollinators that exploit carcasses and dung for reproduction, e.g.(1–10) Of this group of plants, the best known for carrying a carrion odour are members of the parasitic genus, Rafflesia, with the largest known flowers,(2) Aristolochia grandiflora(1) and Helicodiceros muscivorus, commonly known as dead-horse arum,(4,7) Dung odour is well exemplified by Stapelia sp.,(1,9) Arum italicum(5) and many other Arum species.

Although many flower characteristics, especially colour and odour, function in attracting pollinators,(1) evidence of their defensive function has also been theorised. Hinton(11) proposed that bright colours of poisonous flowers are aposematic. Pellmyr and Thien(12) in a broad theoretical study on the origin of angiosperms proposed that floral fragrances originated from chemicals serving as deterrents against herbivore feeding. In a much more focused study of flower defence in the genus Dalechampia, Armbruster(13) and Armbruster et al.(14) proposed that defensive resins have evolved into a pollinator-reward system, and that several defence systems have evolved from such advertisement systems. However, the possibility of dual signalling systems, serving simultaneously to attract some animals and repel others, has not received much research attention. Pollen odours in certain wind-pollinated plants that do not attract pollinators are rich in defensive molecules such as α-methyl alcohols and ketones.(15) The dearamatised isoprenylated phloroglucinols may visually attract pollinators of Hypericum calycinum by their UV pigmentation properties, but at the same time the plant may use this pigmentation as a toxic substance against caterpillars, defending the flowers from herbivory.(16) Herrera et al. proposed that plants that possess a particular combination of traits that simultaneously enhances pollination and defends against herbivores, enjoy a disproportionate fitness advantage over plants possessing individual traits of such combinations. The dual action of attracting pollinators while deterring other animals was also found in other taxa, e.g. Catalpa speciosa and Aloe vryheidensis.(18–20) Thus, floral scents may have a defensive role(21) in addition to the known attracting function.

A general question related to the operation of defensive systems in organisms is whether levels of attack are correlated with the levels of risk. It is commonly noted that since there are no attacks there are no risks, e.g.(22–24) implying that no defence is needed. While in certain cases this view is probably true, the reality may be different in others. This issue has recently been addressed for the occurrence of summer-green plants in the dry Negev desert of Israel,(25) light-coloured coastal and dune plants(26) and red and yellow autumn leaves.(27) The fact that certain organisms are not attacked is not an a priori indication that there is no such risk. It has been argued that in many cases the risks exist but it might well be that the low levels of attack simply indicate that defences are strong, and that the defended organisms have

*Correspondence to: S. Lev-Yadun, Department of Science Education - Biology, Faculty of Science and Science Education, University of Haifa - Oranim, Tivon 36006, Israel.
E-mail: levyadun@research.haifa.ac.il

DOI 10.1002/bies.070191
successfully deterred possible enemies.\(^{25–28}\) An example of such a situation is found in the desert plants that form green islands in the dry summer when all surrounding plants have turned yellow and many of them have been grazed to their roots. Even under such extreme grazing pressure those green plants are repeatedly ignored by the Bedouin’s large flocks of sheep and goats that pass them daily. These summer-green plants are characterised by being poisonous or thorny as protection against herbivory. Under the dry summer conditions in the desert, green is as conspicuous and contrasts with the background, as do yellow, red and black colours in “greener” ecosystems.\(^{25}\) The lack of attacks on these green plants is a clear indication of their very good defensive and deterrent qualities rather than of a low level of risk.

We do not posit that these carrion and dung odours are the only defence of these plants. Some of the plants known for carrying these odours have various known defence mechanisms in addition to the one proposed here. For example, many Arum species, like other members of the Araceae, have internal calcium oxalate needles (raphids) in their tissues associated with various toxins that penetrate the herbivore’s tissues wounded by the raphids.\(^{29,30}\) Moreover, these needles may insert pathogenic bacteria into the body of the herbivores.\(^{31}\) Such defences protect from both invertebrate and vertebrate herbivores. For instance, in Israel, in addition to insect and snail herbivory, there was grazing impact by various ungulates throughout the Pleistocene\(^{32–34}\) which were mostly replaced in the last several millennia by a greater impact by sheep, goat, cattle, horse, donkey and camel grazing.\(^{35}\) In general, all the flora of the Mediterranean region, like many semi-arid and arid regions on earth, was exposed to considerable herbivory pressure, as indicated by the high incidence of spiny plants in such regions.\(^{36}\)

Flowering of plants known for their carrion odour may last from days to months. For instance, in Israel, the foul-smelling Calligonum comosum flowers from February to April, A. dioscoridis from March to May, and A. palestiniun during March and April.\(^{37}\) Moreover, many of the carrion-odour-carrying plants perform vegetative reproduction, forming clones, and the long period of flowering of the sister ramets forms a niche of bad odour for long periods. In this respect, taking into account only the duration of the odorous phase of individual flowers is misleading.

We propose that plants’ carrion or dung odours may concurrently serve two functions rather than fostering pollination alone. According to the classic hypothesis, these plants attract and lure to their flowers various insects that use carrion or dung for their own reproduction and use these insects as pollinators.\(^{1,38,39}\) Here we propose an additional function: the volatile carrion and dung signals produced by these plants may also help to defend the plants and their flowers by deterring mammalian herbivores. In certain cases, such as in Rafflesia, which has only flowers above the ground, the defence may be limited to the flowers. This dual mechanism, operating in the plant’s most sensitive stage of flowering, may have an advantage as it uses resources already assigned to pollinators to attract anti-herbivore defence. As such odours are emitted only during the reproductive season, we propose that attraction of pollinators was the primary function of these chemicals. However, a more drastic possible hypothesis is that these plants evolved these odours primarily to repel herbivores, and their function in attracting pollinators is secondary. In any case, the odours function in small quantities and their production is therefore not costly.

Herbivores may be deterred by carrion odour for several ultimate and proximate reasons. Herbivores killed by large predators such as lions\(^{40}\) and thus may indicate a proximate danger of a large predator. Carrion odour, which signals a potential free meal, is also known to attract many types of carnivores, e.g., lions, grizzly bears, hyenas, wolves, foxes, coyotes, and nearly all other carnivorous vertebrates, as all carnivores are facultative scavengers.\(^{41}\) Odours of carnivore urine and faeces are known to repel herbivores.\(^{42–47}\) The chemical factors that construct these foul odours are sulphurous metabolites associated with meat digestion.\(^{42,44}\) Sulphur compounds dominating or found in the scent of many flowers with fetid odours\(^{9–10}\) indicate a strong potential of these odours to be sensed by herbivore mammals and to repel them from the plants. A field study of the predatory lizard Podarcis lilfordi from the Aire islet shows a danger in the association of plants’ carrion odour and carnivore attraction. The lizard hunts insects attracted to the very strong carrion odour of dead-horse arum.\(^{48}\) The defensive use of volatile molecules produced by plants in response to insect herbivory by attracting predators or parasitoids of insect herbivores is a well-known phenomenon. Attacked plants may emit various volatile signals to draw predators to the attacking herbivores, their potential prey.\(^{49–51}\) Olfactory aposematism, whereby poisonous plants deter mammalian or insect herbivores, has been proposed as well.\(^{52–60}\) The carrion odour may thus serve the plants by attracting carnivores that may defend them just as they attract their pollinators, similar to the attraction of enemies of herbivorous insects by means of various volatiles.\(^{49,50}\) Mammalian herbivores will not find such company appealling and a safe strategy for them would be to avoid carcasses, or in our case, carcass-mimicking plants. Moreover, carcasses are commonly occupied by various pathogenic microbes that may infect approaching mammalian herbivores.\(^{141,61,62}\) Avoidance of dead animals because of pathogen risk is well known in ants, bees and Collembola.\(^{63–66}\)

There are also solid indications for dung avoidance by mammalian herbivores because of the risk of parasites.\(^{67–69}\)
Therefore, we suggest that plants with a strong dung odour may repel mammalian herbivores. Reducing predation risk while foraging, even at the cost of reducing food intake, is a widespread and well-known phenomenon\(^{70–72}\) and the hypothesis we propose here is a special case of this strategy.

The two types of potential odourous repellents proposed here to trick herbivores into thinking that they are heading for danger may be regarded as a special kind of olfactory aposematism, but not the regular one of poisonous plants. Since these plants are known to use olfactory deception to attract pollinators,\(^{1,2,4–8}\) the deceptive use of odours for defence should be considered a logical follow-up strategy. Several cases are known, in which visual mimicry of live animals has been suggested to operate in plants to reduce herbivory\(^{73–75}\) and an olfactory parallel would be a related form of the same phenomenon. Thanatosis (playing dead), and faeces mimicry (caterpillars that look like bird droppings or larva that use a faecal thatch) are well-known visual defences in animals.\(^{76–78}\) Olfactory defence by faeces odour via the volatile skatole is known in insects belonging to the chrysopids (lacewings).\(^{79}\) Fear of predation may considerably influence herbivores\(^{44,80,81}\) or pollinator\(^{82}\) behaviour. We propose that the plants discussed here use the ecological opportunities presented by such fears to defend themselves. It is possible to exploit such deception for a long time in evolutionary perspective if the proportion of the cheaters in the dominant vegetation, thus they are never as common as spiny cacti in the deserts of North America or thistles in the Near East. The relatively small number of such plants in any specific ecosystem we know in the Eastern Mediterranean and elsewhere seems to accord with such a strategy. While foraging, even at the cost of reducing food intake, is a widespread and well-known phenomenon\(^{70–72}\) and the hypothesis we propose here is a special case of this strategy.

Acknowledgments: We thank two anonymous reviewers for their important suggestions.

References