Home

Contact

Research

Openings

Teaching

Papers

Links

 




[76] Spatially-partitioned many-body vortices, S. Klaiman and O. E. Alon, J. Phys.: Conf. Ser. 691, 012015 (2016).

[75] Uncertainty product of an out-of-equilibrium many-particle system, S. Klaiman, A. I. Streltsov, and O. E. Alon, Phys. Rev. A 93, 023605 (2016).

[74] Many-body tunneling dynamics of Bose-Einstein condensates and vortex states in two spatial dimensions, R. Beinke, S. Klaiman, L. S. Cederbaum, A. I. Streltsov, and O. E. Alon, Phys. Rev. A 92, 043627 (2015).

[73] Variance as a sensitive probe of correlations, S. Klaiman and O. E. Alon, Phys. Rev. A 91, 063613 (2015).

[72] Many-body excitation spectra of trapped bosons with general interaction by linear response, O. E. Alon, J. Phys.: Conf. Ser. 594, 012039 (2015).

[71] Quantum Many-Body Dynamics of Trapped Bosons with the MCTDHB Package: Towards New Horizons with Novel Physics, S. Klaiman, A. U. J. Lode, K. Sakmann, O. I. Streltsova, O. E. Alon, L. S. Cederbaum, and A. I. Streltsov, in High Performance Computing in Science and Engineering '14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014, W. E. Nagel, D. H. Kröner, and M. M. Resch (Eds.) (Springer, Heidelberg, 2015), 63.

[70] Breaking the resilience of a two-dimensional Bose-Einstein condensate to fragmentation, S. Klaiman, A. U. J. Lode, A. I. Streltsov, L. S. Cederbaum, and O. E. Alon, Phys. Rev. A 90, 043620 (2014).

[69] Generic regimes of quantum many-body dynamics of trapped bosonic systems with strong repulsive interactions, O. I. Streltsova, O. E. Alon, L. S. Cederbaum, and A. I. Streltsov, Phys. Rev. A 89, 061602(R) (2014).

[68] Controlling the velocities and the number of emitted particles in the tunneling to open space dynamics, A. U. J. Lode, S. Klaiman, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A 89, 053620 (2014).

[67] Elastic scattering of a Bose-Einstein condensate at a potential landscape, I. Brezinová, J. Burgdörfer, A. U. J. Lode, A. I. Streltsov, L. S. Cederbaum, O. E. Alon, L. A. Collins, and B. I. Schneider, J. Phys.: Conf. Ser. 488, 012032 (2014).

[66] Universality of fragmentation in the Schrödinger dynamics of bosonic Josephson junctions, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 89, 023602 (2014).

[65] Unified view on linear response of interacting identical and distinguishable particles from multiconfigurational time-dependent Hartree methods, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, J. Chem. Phys. 140, 034108 (2014).

[64] Numerically-Exact Schrödinger Dynamics of Closed and Open Many-Boson Systems with the MCTDHB Package, A. U. J. Lode, K. Sakmann, R. A. Doganov, J. Grond, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, in High Performance Computing in Science and Engineering '13: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013, W. E. Nagel, D. H. Kröner, and M. M. Resch (Eds.) (Springer, Heidelberg, 2013), 81.

[63] Excitation spectra of many-body systems by linear response: General theory and applications to trapped condensates, J. Grond, A. I. Streltsov, A. U. J. Lode, K. Sakmann, L. S. Cederbaum, and O. E. Alon, Phys. Rev. A 88, 023606 (2013).

[62] Multiconfigurational Time-Dependent Hartree Methods for Bosonic Systems: Theory and Applications, O. E. Alon, A. I. Streltsov, K. Sakmann, and L. S. Cederbaum, in Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Vol. 1 Cold Atoms Series), N. P. Proukakis, S. A. Gardiner, M. J. Davis, and M. H. Szymanska (Eds.) (Imperial College Press, London, 2013), 147.

[61] Two trapped particles interacting by a finite-range two-body potential in two spatial dimensions, R. A. Doganov, S. Klaiman, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A 87, 033631 (2013).

[60] Excitation spectra of fragmented condensates by linear response: General theory and application to a condensate in a double-well potential, J. Grond, A. I. Streltsov, L. S. Cederbaum, and O. E. Alon, Phys. Rev. A 86, 063607 (2012).

[59] Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type, A. U. J. Lode, K. Sakmann, O. E. Alon, L. S. Cederbaum, and A. I. Streltsov, Phys. Rev. A 86, 063606 (2012).

[58] How an interacting many-body system tunnels through a potential barrier to open space, A. U. J. Lode, A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S. Cederbaum, Proc. Natl. Acad. Sci. USA 109, 13521 (2012).

[57] Wave chaos as signature for depletion of a Bose-Einstein condensate, I. Brezinová, A. U. J. Lode, A. I. Streltsov, O. E. Alon, L. S. Cederbaum, and J. Burgdörfer, Phys. Rev. A 86, 013630 (2012).

[56] Dynamics and symmetries of a repulsively bound atom pair in an infinite optical lattice, A. Deuchert, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 86, 013618 (2012).

[55] Recursive formulation of the multiconfigurational time-dependent Hartree method for fermions, bosons and mixtures thereof in terms of one-body density operators, O. E. Alon, A. I. Streltsov, K. Sakmann, A. U. J. Lode, J. Grond, and L. S. Cederbaum, Chem. Phys. 401, 2 (2012).

[54] Number fluctuations of cold, spatially split bosonic objects, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 84, 053622 (2011).

[53] Swift loss of coherence of soliton trains in attractive Bose-Einstein condensates, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. Lett. 106, 240401 (2011).

[52] Optimal time-dependent lattice models for nonequilibrium dynamics, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, New J. Phys. 13, 043003 (2011).

[51] Accurate multi-boson long-time dynamics in triple-well periodic traps, A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 83, 043604 (2011).

[50] Fragmented many-body states of definite angular momentum and stability of attractive three-dimensional condensates, M. C. Tsatsos, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 82, 033613 (2010).

[49] Quantum dynamics of attractive versus repulsive bosonic Josephson junctions: Bose-Hubbard and full-Hamiltonian results, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 82, 013620 (2010).

[48] General mapping for bosonic and fermionic operators in Fock space, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 81, 022124 (2010).

[47] Exact quantum dynamics of a bosonic Josephson junction, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. Lett. 103, 220601 (2009).

[46] Scattering of an attractive Bose-Einstein condensate from a barrier: Formation of quantum superposition states, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 80, 043616 (2009).

[45] Efficient generation and properties of mesoscopic quantum superposition states in an attractive Bose-Einstein condensate threaded by a potential barrier, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, J. Phys. B 42, 091004 (2009).

[44] The multiconfigurational time-dependent Hartree method for identical particles and mixtures thereof, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, in Multidimensional Quantum Dynamics. MCTDH Theory and Applications, H.-D. Meyer, F. Gatti, and G. A. Worth (Eds.) (Wiley-VCH, Weinheim, 2009), 185.

[43] Many-body theory for systems with particle conversion: Extending the multiconfigurational time-dependent Hartree method, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A. 79, 022503 (2009).

[42] Exact decay and tunneling dynamics of interacting few-boson systems, A. U. J. Lode, A. I. Streltsov, O. E. Alon, H.-D. Meyer, and L. S. Cederbaum, J. Phys. B 42, 044018 (2009); Corrigendum, 43, 029802 (2010).

[41] Build-up of coherence between initially-independent subsystems: The case of Bose-Einstein condensates, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Lett. A 373, 301 (2009).

[40] Reduced density matrices and coherence of trapped interacting bosons, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A. 78, 023615 (2008).

[39] Formation and dynamics of many-boson fragmented states in one-dimensional attractive ultracold gases, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. Lett. 100, 130401 (2008).

[38] Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A, 77, 033613 (2008).

[37] Fragmented metastable states exist in an attractive Bose-Einstein condensate for atom numbers well above the critical number of the Gross-Pitaevskii theory, L. S. Cederbaum, A. I. Streltsov, and O. E. Alon, Phys. Rev. Lett. 100, 040402 (2008).

[36] Multiconfigurational time-dependent Hartree method for mixtures consisting of two types of identical particles, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A, 76, 062501 (2007).

[35] Unified view on multiconfigurational time-propagation for systems consisting of identical particles, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, J. Chem. Phys. 127, 154103 (2007).

[34] Role of excited states in the splitting of a trapped interacting Bose-Einstein condensate by a time-dependent barrier, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. Lett. 99, 030402 (2007).

[33] Multiorbital mean-field for bosons, spinor bosons, and Bose-Bose and Bose-Fermi mixtures in real-space optical lattices, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A 76, 013611 (2007).

[32] Interferences in the density of two Bose-Einstein condensates consisting of identical or different atoms, L. S. Cederbaum, A. I. Streltsov, Y. B. Band, and O. E. Alon, Phys. Rev. Lett. 98, 110405 (2007).

[31] Time-dependent multi-orbital mean-field for fragmented condensates, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Lett. A 362, 453 (2007).

[30] Demixing of bosonic mixtures in optical lattices from macroscopic to microscopic scales, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. Lett. 97, 230403 (2006).

[29] Coupled-cluster theory for bosons in rings and optical lattices, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, J. Mol. Struc.: Theochem 768, 151 (2006).

[28] General variational many-body theory with complete self-consistency for trapped bosonic systems, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 73, 063626 (2006).

[27] Coupled-cluster theory for systems of bosons in external traps, L. S. Cederbaum, O. E. Alon, and A. I. Streltsov, Phys. Rev. A 73, 043609 (2006).

[26] Fragmentation of Bose-Einstein condensates in multi-well three-dimensional traps, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Lett. A 347 (Einstein centennial volume), 88 (2005).

[25] Pathway from condensation via fragmentation to fermionization of cold bosonic systems, O. E. Alon and L. S. Cederbaum, Phys. Rev. Lett. 95, 140402 (2005).

[24] Exact ground state of finite Bose-Einstein condensates on a ring, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 72, 033613 (2005).

[23] Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. Lett. 95, 030405 (2005).

[22] Interacting fermions and bosons with definite total momentum, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. B 71, 125113 (2005).

[21] Continuous configuration-interaction for condensates in a ring, O. E. Alon, A. I. Streltsov, K. Sakmann, and L. S. Cederbaum, Europhys. Lett. 67, 8 (2004).

[20] Atoms, molecules, crystals and nanotubes in laser fields: From dynamical symmetry to selective high-order harmonic generation of soft x-rays, O. E. Alon, V. Averbukh, and N. Moiseyev, in Advances in Quantum Chemistry Vol. 47: A Tribute Volume to Osvaldo Goscinski , E. J. Braendas and E. S. Kryachko (Eds.) (Elsevier, Amsterdam, 2004), 393.

[19] From spatial symmetry to vibrational spectroscopy of single-walled nanotubes, O. E. Alon, J. Phys.: Conds. Matt. 15, S2489 (2003).

[18] Generation and control of high-order harmonics by the interaction of an infrared laser with a thin graphite layer A. K. Gupta, O. E. Alon, and N. Moiseyev, Phys. Rev. B 68, 205101 (2003).

[17] Hellmann-Feynman theorem at degeneracies, O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003).

[16] Bulk photogalvanic effects beyond second order, O. E. Alon, Phys. Rev. B 67, 121103(R) (2003).

[15] Green function for elastic scattering from open-shell many-body targets, O. E. Alon and L. S. Cederbaum, in Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin, E. J. Braendas and E. S. Kryachko (Eds.) (Kluwer, Dordrecht, 2003), Vol. II, 117.

[14] Scattering from open-shell many-body targets, O. E. Alon and L. S. Cederbaum, J. Phys. A 35, L303 (2002).

[13] Dynamical symmetries of time-periodic Hamiltonians, O. E. Alon, Phys. Rev. A 66, 013414 (2002).

[12] Stability and instability of dipole selection rules for atomic high-order harmonic generation spectra in two-beam setups, V. Averbukh, O. E. Alon, and N. Moiseyev, Phys. Rev. A 65, 063402 (2002).

[11] Symmetry properties of single-walled boron nitride nanotubes, O. E. Alon, Phys. Rev. B 64, 153408 (2001).

[10] High-order harmonic generation by molecules of discrete rotational symmetry interacting with circularly polarized field, V. Averbukh, O. E. Alon, and N. Moiseyev, Phys. Rev. A 64, 033411 (2001).

[9] Number of Raman- and infrared-active vibrations in single-walled carbon nanotubes, O. E. Alon, Phys. Rev. B 63, 201403(R) (2001).

[8] High harmonic generation of soft X-rays by carbon nanotubes, O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev. Lett. 85, 5218 (2000).

[7] Crossed beam experiment: High harmonic generation and dynamical symmetry, V. Averbukh, O. E. Alon, and N. Moiseyev, Phys. Rev. A 60, 2585 (1999).

[6] Selection rules for the high harmonic generation spectra, O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev. Lett. 80, 3743 (1998).

[5] Broken dynamical symmetry conditions to control a chemical reaction by the Complex Coordinate (t,t') Method, O. E. Alon and N. Moiseyev, Chem. Phys. 196, 499 (1995).

[4] The (t,t') method and gauge transformations for two electronic potential surfaces: An application to the partial widths of H2+, N. Moiseyev, O. E. Alon, and V. Ryaboy, J. Phys. B 28, 2611 (1995).

[3] Infinite matrices may violate the associative law, O. E. Alon, N. Moiseyev, and A. Peres, J. Phys. A 28, 1765 (1995).

[2] The solution of the time-dependent Schröinger equation by the (t,t') method: Multiphoton ionization/dissociation probabilities in different gauges of the electromagnetic potentials, U. Peskin, O. E. Alon, and N. Moiseyev, J. Chem. Phys. 100, 7310 (1994).

[1] Balslev-Combes theorem within the framework of the finite-matrix approximation, O. E. Alon and N. Moiseyev, Phys. Rev. A 46, 3807 (1992).