
[76]
Spatiallypartitioned manybody vortices,
S. Klaiman and O. E. Alon,
J. Phys.: Conf. Ser.
691, 012015 (2016).
[75]
Uncertainty product of an outofequilibrium manyparticle system,
S. Klaiman, A. I. Streltsov, and O. E. Alon,
Phys. Rev. A
93, 023605 (2016).
[74]
Manybody tunneling dynamics of BoseEinstein condensates and vortex states in two spatial dimensions,
R. Beinke, S. Klaiman, L. S. Cederbaum, A. I. Streltsov, and O. E. Alon,
Phys. Rev. A
92, 043627 (2015).
[73]
Variance as a sensitive probe of correlations,
S. Klaiman and O. E. Alon,
Phys. Rev. A
91, 063613 (2015).
[72]
Manybody excitation spectra of trapped bosons with general interaction by linear response,
O. E. Alon,
J. Phys.: Conf. Ser.
594, 012039 (2015).
[71]
Quantum ManyBody Dynamics of Trapped Bosons with the MCTDHB Package: Towards New Horizons with Novel Physics,
S. Klaiman, A. U. J. Lode, K. Sakmann, O. I. Streltsova, O. E. Alon, L. S. Cederbaum, and A. I. Streltsov,
in High Performance Computing in Science and Engineering '14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014,
W. E. Nagel, D. H. Kröner, and M. M. Resch (Eds.) (Springer, Heidelberg, 2015), 63.
[70]
Breaking the resilience of a twodimensional BoseEinstein condensate to fragmentation,
S. Klaiman, A. U. J. Lode, A. I. Streltsov, L. S. Cederbaum, and O. E. Alon,
Phys. Rev. A
90, 043620 (2014).
[69]
Generic regimes of quantum manybody dynamics of trapped bosonic systems with strong repulsive interactions,
O. I. Streltsova, O. E. Alon, L. S. Cederbaum, and A. I. Streltsov,
Phys. Rev. A
89, 061602(R) (2014).
[68]
Controlling the velocities and the number of emitted particles in the tunneling to open space dynamics,
A. U. J. Lode, S. Klaiman, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. A
89, 053620 (2014).
[67]
Elastic scattering of a BoseEinstein condensate at a potential landscape,
I. Brezinová, J. Burgdörfer, A. U. J. Lode, A. I. Streltsov, L. S. Cederbaum,
O. E. Alon, L. A. Collins, and B. I. Schneider,
J. Phys.: Conf. Ser.
488, 012032 (2014).
[66]
Universality of fragmentation in the Schrödinger dynamics of bosonic Josephson junctions,
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A
89, 023602 (2014).
[65]
Unified view on linear response of interacting identical and distinguishable particles from multiconfigurational timedependent Hartree methods,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
J. Chem. Phys.
140, 034108 (2014).
[64]
NumericallyExact Schrödinger Dynamics of Closed and Open ManyBoson Systems with the MCTDHB Package,
A. U. J. Lode, K. Sakmann, R. A. Doganov, J. Grond, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
in High Performance Computing in Science and Engineering '13: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013,
W. E. Nagel, D. H. Kröner, and M. M. Resch (Eds.) (Springer, Heidelberg, 2013), 81.
[63]
Excitation spectra of manybody systems by linear response: General theory and applications to trapped condensates,
J. Grond, A. I. Streltsov, A. U. J. Lode, K. Sakmann, L. S. Cederbaum, and O. E. Alon,
Phys. Rev. A
88, 023606 (2013).
[62]
Multiconfigurational TimeDependent Hartree Methods for Bosonic Systems: Theory and Applications,
O. E. Alon, A. I. Streltsov, K. Sakmann, and L. S. Cederbaum,
in Quantum Gases: Finite Temperature and NonEquilibrium Dynamics (Vol. 1 Cold Atoms Series),
N. P. Proukakis, S. A. Gardiner, M. J. Davis, and M. H. Szymanska (Eds.) (Imperial College Press, London, 2013), 147.
[61]
Two trapped particles interacting by a finiterange twobody potential in two spatial dimensions,
R. A. Doganov, S. Klaiman, O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. A
87, 033631 (2013).
[60]
Excitation spectra of fragmented condensates by linear response: General theory and application to a condensate in a doublewell potential,
J. Grond, A. I. Streltsov, L. S. Cederbaum, and O. E. Alon,
Phys. Rev. A
86, 063607 (2012).
[59]
Numerically exact quantum dynamics of bosons with timedependent interactions of harmonic type,
A. U. J. Lode, K. Sakmann, O. E. Alon, L. S. Cederbaum, and A. I. Streltsov,
Phys. Rev. A
86, 063606 (2012).
[58]
How an interacting manybody system tunnels through a potential barrier to open space,
A. U. J. Lode, A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S. Cederbaum,
Proc. Natl. Acad. Sci. USA
109, 13521 (2012).
[57]
Wave chaos as signature for depletion of a BoseEinstein condensate,
I. Brezinová, A. U. J. Lode, A. I. Streltsov, O. E. Alon, L. S. Cederbaum, and J. Burgdörfer,
Phys. Rev. A
86, 013630 (2012).
[56]
Dynamics and symmetries of a repulsively bound atom pair in an infinite optical lattice,
A. Deuchert, K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A
86, 013618 (2012).
[55]
Recursive formulation of the multiconfigurational timedependent Hartree method for fermions,
bosons and mixtures thereof in terms of onebody density operators,
O. E. Alon, A. I. Streltsov, K. Sakmann, A. U. J. Lode, J. Grond, and L. S. Cederbaum,
Chem. Phys.
401, 2 (2012).
[54]
Number fluctuations of cold, spatially split bosonic objects,
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A
84, 053622 (2011).
[53]
Swift loss of coherence of soliton trains in attractive BoseEinstein condensates,
A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. Lett.
106, 240401 (2011).
[52]
Optimal timedependent lattice models for nonequilibrium dynamics,
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
New J. Phys.
13, 043003 (2011).
[51]
Accurate multiboson longtime dynamics in triplewell periodic traps,
A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A
83, 043604 (2011).
[50]
Fragmented manybody states of definite angular momentum and stability of attractive threedimensional condensates,
M. C. Tsatsos, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A
82, 033613 (2010).
[49]
Quantum dynamics of attractive versus repulsive bosonic Josephson junctions: BoseHubbard and fullHamiltonian results,
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A
82, 013620 (2010).
[48]
General mapping for bosonic and fermionic operators in Fock space,
A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A
81, 022124 (2010).
[47]
Exact quantum dynamics of a bosonic Josephson junction,
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. Lett.
103, 220601 (2009).
[46]
Scattering of an attractive BoseEinstein condensate from a barrier: Formation of quantum superposition states,
A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A
80, 043616 (2009).
[45]
Efficient generation and properties of mesoscopic quantum superposition states in an attractive BoseEinstein condensate threaded by a potential barrier,
A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
J. Phys. B
42, 091004 (2009).
[44]
The multiconfigurational timedependent Hartree method for identical particles and mixtures thereof,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
in Multidimensional Quantum Dynamics. MCTDH Theory and Applications,
H.D. Meyer, F. Gatti, and G. A. Worth (Eds.) (WileyVCH, Weinheim, 2009), 185.
[43]
Manybody theory for systems with particle conversion:
Extending the multiconfigurational timedependent Hartree
method,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. A. 79, 022503 (2009).
[42]
Exact decay and tunneling dynamics of interacting fewboson systems,
A. U. J. Lode, A. I. Streltsov, O. E. Alon, H.D. Meyer, and L. S. Cederbaum,
J. Phys. B 42, 044018 (2009);
Corrigendum,
43, 029802 (2010).
[41]
Buildup of coherence between initiallyindependent subsystems: The case of BoseEinstein condensates,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Lett. A 373, 301 (2009).
[40]
Reduced density matrices and coherence of trapped interacting bosons,
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A. 78, 023615 (2008).
[39]
Formation and dynamics of manyboson fragmented states in onedimensional attractive ultracold gases,
A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. Lett. 100, 130401 (2008).
[38]
Multiconfigurational timedependent Hartree method for bosons: Manybody dynamics of bosonic systems,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. A, 77, 033613 (2008).
[37]
Fragmented metastable states exist in an attractive BoseEinstein condensate for atom numbers well above the critical number of the
GrossPitaevskii theory,
L. S. Cederbaum, A. I. Streltsov, and O. E. Alon,
Phys. Rev. Lett. 100, 040402 (2008).
[36]
Multiconfigurational timedependent Hartree method for mixtures consisting of two types of identical particles,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. A, 76, 062501 (2007).
[35]
Unified view on multiconfigurational timepropagation for systems consisting of identical particles,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
J. Chem. Phys. 127, 154103 (2007).
[34]
Role of excited states in the splitting of a trapped interacting BoseEinstein condensate by a timedependent barrier,
A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. Lett. 99, 030402 (2007).
[33]
Multiorbital meanfield for bosons, spinor bosons, and BoseBose and BoseFermi mixtures in realspace optical lattices,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. A 76, 013611 (2007).
[32]
Interferences in the density of two BoseEinstein condensates consisting of identical or different atoms,
L. S. Cederbaum, A. I. Streltsov, Y. B. Band, and O. E. Alon,
Phys. Rev. Lett. 98, 110405 (2007).
[31]
Timedependent multiorbital meanfield for fragmented condensates,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Lett. A 362, 453 (2007).
[30]
Demixing of bosonic mixtures in optical lattices from macroscopic to microscopic scales,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. Lett. 97, 230403 (2006).
[29]
Coupledcluster theory for bosons in rings and optical lattices,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
J. Mol. Struc.: Theochem 768, 151 (2006).
[28]
General variational manybody theory with complete selfconsistency for trapped bosonic systems,
A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A 73, 063626 (2006).
[27]
Coupledcluster theory for systems of bosons in external traps,
L. S. Cederbaum, O. E. Alon, and A. I. Streltsov,
Phys. Rev. A 73, 043609 (2006).
[26]
Fragmentation of BoseEinstein condensates in multiwell threedimensional traps,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Lett. A 347 (Einstein centennial volume), 88 (2005).
[25]
Pathway from condensation via fragmentation to fermionization of cold bosonic systems,
O. E. Alon and L. S. Cederbaum,
Phys. Rev. Lett. 95, 140402 (2005).
[24]
Exact ground state of finite BoseEinstein condensates on a ring,
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A 72, 033613 (2005).
[23]
Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. Lett. 95, 030405 (2005).
[22]
Interacting fermions and bosons with definite total momentum,
O. E. Alon, A. I. Streltsov, and L. S. Cederbaum,
Phys. Rev. B 71, 125113 (2005).
[21]
Continuous configurationinteraction for condensates in a ring,
O. E. Alon, A. I. Streltsov, K. Sakmann, and L. S. Cederbaum,
Europhys. Lett. 67, 8 (2004).
[20]
Atoms, molecules, crystals and nanotubes in laser fields: From dynamical symmetry to selective highorder harmonic generation of
soft xrays,
O. E. Alon, V. Averbukh, and N. Moiseyev,
in Advances in Quantum Chemistry Vol. 47: A Tribute Volume to Osvaldo
Goscinski , E. J. Braendas and E. S. Kryachko (Eds.) (Elsevier, Amsterdam, 2004), 393.
[19]
From spatial symmetry to vibrational spectroscopy of singlewalled nanotubes,
O. E. Alon,
J. Phys.: Conds. Matt. 15, S2489 (2003).
[18]
Generation and control of highorder harmonics by the interaction of an infrared laser with a thin graphite layer
A. K. Gupta, O. E. Alon, and N. Moiseyev,
Phys. Rev. B 68, 205101 (2003).
[17]
HellmannFeynman theorem at degeneracies,
O. E. Alon and L. S. Cederbaum,
Phys. Rev. B 68, 033105 (2003).
[16]
Bulk photogalvanic effects beyond second order,
O. E. Alon,
Phys. Rev. B 67, 121103(R) (2003).
[15]
Green function for elastic scattering from openshell manybody targets,
O. E. Alon and L. S. Cederbaum,
in Fundamental World of Quantum Chemistry: A Tribute to the
Memory of PerOlov Löwdin, E. J. Braendas and E. S. Kryachko (Eds.) (Kluwer,
Dordrecht, 2003), Vol. II, 117.
[14]
Scattering from openshell manybody targets,
O. E. Alon and L. S. Cederbaum,
J. Phys. A 35, L303 (2002).
[13]
Dynamical symmetries of timeperiodic Hamiltonians,
O. E. Alon,
Phys. Rev. A 66, 013414 (2002).
[12]
Stability and instability of dipole selection rules for atomic highorder harmonic generation spectra in twobeam setups,
V. Averbukh, O. E. Alon, and N. Moiseyev,
Phys. Rev. A 65, 063402 (2002).
[11]
Symmetry properties of singlewalled boron nitride nanotubes,
O. E. Alon,
Phys. Rev. B 64, 153408 (2001).
[10]
Highorder harmonic generation by molecules of discrete rotational symmetry interacting with circularly polarized field,
V. Averbukh, O. E. Alon, and N. Moiseyev,
Phys. Rev. A 64, 033411 (2001).
[9]
Number of Raman and infraredactive vibrations in singlewalled carbon nanotubes,
O. E. Alon,
Phys. Rev. B 63, 201403(R) (2001).
[8]
High harmonic generation of soft Xrays by carbon nanotubes,
O. E. Alon, V. Averbukh, and N. Moiseyev,
Phys. Rev. Lett. 85, 5218 (2000).
[7]
Crossed beam experiment: High harmonic generation and dynamical symmetry,
V. Averbukh, O. E. Alon, and N. Moiseyev,
Phys. Rev. A 60, 2585 (1999).
[6]
Selection rules for the high harmonic generation spectra,
O. E. Alon, V. Averbukh, and N. Moiseyev,
Phys. Rev. Lett. 80, 3743 (1998).
[5]
Broken dynamical symmetry conditions to control a chemical reaction by the Complex Coordinate (t,t') Method,
O. E. Alon and N. Moiseyev,
Chem. Phys. 196, 499 (1995).
[4]
The (t,t') method and gauge transformations for two electronic potential surfaces:
An application to the partial widths of H_{2}^{+},
N. Moiseyev, O. E. Alon, and V. Ryaboy,
J. Phys. B 28, 2611 (1995).
[3]
Infinite matrices may violate the associative law,
O. E. Alon, N. Moiseyev, and A. Peres,
J. Phys. A 28, 1765 (1995).
[2]
The solution of the timedependent Schröinger equation by the (t,t') method:
Multiphoton ionization/dissociation probabilities in different gauges of the electromagnetic potentials,
U. Peskin, O. E. Alon, and N. Moiseyev,
J. Chem. Phys. 100, 7310 (1994).
[1]
BalslevCombes theorem within the framework of the finitematrix approximation,
O. E. Alon and N. Moiseyev,
Phys. Rev. A 46, 3807 (1992).
